Decomposition of Random Graphs into Complete Bipartite Graphs
نویسندگان
چکیده
منابع مشابه
Decomposition of Random Graphs into Complete Bipartite Graphs
We consider the problem of partitioning the edge set of a graph G into the minimum number τ(G) of edge-disjoint complete bipartite subgraphs. We show that for a random graph G in G(n, p), where p is a constant no greater than 1/2, almost surely τ(G) is between n− c(logn) and n− 2 log1/p n for any positive constants c and .
متن کاملMixed cycle-E-super magic decomposition of complete bipartite graphs
An H-magic labeling in a H-decomposable graph G is a bijection f : V (G) ∪ E(G) → {1, 2, ..., p + q} such that for every copy H in the decomposition, ΣνεV(H) f(v) + ΣeεE(H) f(e) is constant. f is said to be H-E-super magic if f(E(G)) = {1, 2, · · · , q}. A family of subgraphs H1,H2, · · · ,Hh of G is a mixed cycle-decomposition of G if every subgraph Hi is isomorphic to some cycle Ck, for k ≥ ...
متن کاملMixed cycle-E-super magic decomposition of complete bipartite graphs
An H-magic labeling in a H-decomposable graph G is a bijection f : V (G) ∪ E(G) → {1, 2, ..., p + q} such that for every copy H in the decomposition, ∑νεV (H) f(v) + ∑νεE (H) f(e) is constant. f is said to be H-E-super magic if f(E(G)) = {1, 2, · · · , q}. A family of subgraphs H1,H2, · · · ,Hh of G is a mixed cycle-decomposition of G if every subgraph Hi is isomorphic to some cycle Ck, for k ≥...
متن کاملEigensharp Graphs: Decomposition into Complete Bipartite Subgraphs
Let r(G) be the minimum number of complete bipartite subgraphs needed to partition the edges of G, and let r'G) be the larger of the number of positive and number of negative eigenvalues of G. It is known that T{G) > r(G); graphs with t(G) = r(G) are called eigensharp. Eigensharp graphs include graphs, trees, cycles Cn with n = 4 or n ^ 4k, prisms Cn\2K2 with n ^ 3fc, "twisted prisms" (also cal...
متن کاملOn the cyclic decomposition of complete graphs into bipartite graphs
Let G be a graph with n edges. It is known that there exists a cyelic Gdecomposition of K 2n+1 if and only if G has a p-Iabeling. An a-labeling of G easily yields both a cyelic G-decomposition of Kn,n and of K2nx+l for all positive integers x. It is well-known that certain classes of bipartite graphs (including certain trees) do not have a-Iabelings. :Moreover, there are bipartite graphs with n...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
ژورنال
عنوان ژورنال: SIAM Journal on Discrete Mathematics
سال: 2016
ISSN: 0895-4801,1095-7146
DOI: 10.1137/140960888